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By George E. Griffith
SUMMARY ' ' B

A method, taking into account the effects of flexlibility and based
on a genersal eighthporder differential equation, is presented for finding
the stresses in & two-bay, noncirculer cylinder the cross section of
which can be composed of circular arcse. Numerical examples are glven
for two cases of ring flexibility for a cylinder of doubly symmetrical
(essentially elliptic) cross section, subjected to concentrated radial,
moment, and tangential loads. The results parallel those already obtalned
for shells with circular rings. : : _ }

INTRODUCTION

In sirplane fuselages with flexible rings subJjected to concentrated
loads, the stresses in the neighborhood of the load differ markedly from
those given by the simple engineering formulas, and more refined metho Hs,
which take into account the interaction of rings and shell, are needed
to predict the stresses accurately. The first paper on this subJect
published in May 194k, was that of Wignot, Combs, and Ensrud (reference 1),
who treated the circular cylinder subjected to concentrated loads but
neglected the effect of the extensional deformations of the shell.

Hoff (reference 2) gave a more complete analysis, including the effects
of many rings, for the case of symmetric transverse loads. The results
were corroborated experimentally by Kuhn, Duberg, and Griffith (refer-
ence 3), who also extended the theory to include concentrated moment

and tangential loads. Later, Duberg and Kempner (references L and 5)
reduced the labor of computation by giving the results in the form of
charts and showed that for practical purposes it was usually sufficient
to conasider only a region within 2 bay lengths of the load. Further
investigations considered additional effects, heretofore neglected, such
as the shearing and axial deformation of the rings (references 6 to 8),
bending rigidity of stringers (references 8 and 9), shear carried by the
stringers (reference T), and eccentricity of ring and sheet (references 6,
7, 8, and 10).
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All investigations referred to dealt exclusively with reinforced
monocoque cylinders of clrcular cross section. The present paper gives
an analyslis for a two-bay noncircular cylinder, enclosed between ring
bulkheads rigid in their planes, with the middle, flexible ring subJected
to concentrated and distributed loads. The fundamental assumptlions used
in the analysis are the seme as those -previously used for circular
cylinders. ' ’

Many noncircular fuselages can be closely spproximeted by using
clrcular sections of. different radil and Jolning the sections at points
of tangency. The rings discussed herein are of this form. Assoclated
with each ring section is a two-bay panel (fig. 1), any number. of similar
panels comprising the complete two-bay cylinder. The solutlion for the
stressea in such a structure is based on the development of a general
eighth-order differential equation, written in terms of the moment at
the skin center line. A separate differentisl equation of the same
genersl form applies to each curved panel in the structure. Application
of the correct boundary conditions results in sets of simultaneous
equations which yleld the unknown constants in the moment expression.

Although & two-bay cylinder does not conform to the usual fuselage
structure, it is believed, on the basis of comparisons with some of the
work previously mentioned, that—the results obtained are indicative of
those found in more complicated structures. In accordence with the
findings of prior investigations, shear and axial deformations of the
loaded ring are neglected, but eccentricity of-ring and sheet is included.

The numerical examples deal with a doubly symmetrical, two-bay
cylinder of nearly elliptic cross section (fig. 2), subjected . to concen-
trated loads.

SYMBOLS
)
A = &R
113
2
B = Et'R _ _ i
GtL2 '
Cq coefficient of shear flow in sheet
Cy coefficient of ring axial force B
CM coefficient of ring bending moment

Cy coefficient of ring shesr force

3 i‘
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H
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c1
C2
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Young's modulus in sheet and ring, pounds per squaré inch N
shear modulus in sheet, pounds per square inch

axial force acting on sheet, pounds

moment of inertia of ring section, inchesu

length of bay, inches -~
bendlng moment at sheet center line, inch-pounds

applied concentrated moment, inch-pounds
bending moment about neutral axis of ring, inch~pounds

applied concentrated radiel load, pounds
radius to sheet center line of circulaxr panel, inches
radll of circular panels comprising cylinder, inches
applied concentrated tangentlal load, pounds

shear force, pounds

camplex roots of auxiliary slgebraic equation (used when real
roots also occur)

complex roots of auxiliary algebralc equation (used when no
real roots occur)

eccentricity of ring and sheet (distance between sheet center
line and neutral asxis of ring), inches

distributed radial load acting on sheet, pounds per inch

distributed axial losd acting on sheet, pounds per inch

real roots of auxiliary algebraic. equation

distributed moment acting on sheet, inch-pounds per inch

normal force in stringers, pounds per inch
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a " ghear flow in sheet, pounds per inch

8 distance in circumferential direction, inches

t thickness of all material carrying bending stresses in panel
if uniformly spread around circumference, inches

t thickness of sheet, inches

u displacement of sheet in axlial direction, inches

v displacement of sheet in circumferential direction, inches

vo displacement of sheet in circumferential direction at ring,
inches _

w displacement of sheet or ring in radial direction, inches

X distance in axial direction measured from locaded ring, inches

V4 shear strain in sheet

6g normal strain in sheet in circumferential direction

6y normal strain in sheet in x-direction

] angular distance, degrees or radians

g stringer normal stress, pounds per square inch

Og normel stress in sheet in cilrcumferential direction, pounds

per square inch

T shear stress in sheet, pounds per square inch
GENERAL DIFFERENTIAL EQUATION

The basic element of the present analysis 1s a two-bay panel, as
shown in figure 1, composed of sheet, longitudinal stiffeners or stringers,
and transverse stiffening ring sections of constant radius. Distributed
or concentrated loads are applied in the plane of the middle or flexible
ring. By Jolning several panels at points of tangency, many two-bay
cylinders of various cross-sectional shapes can be achieved.

In actuel practice the sheet covering is outside the rings, and
this eccentricity of sheet and ring 1s henceforth taken into account.
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For convenlence the moment considered is the moment which exists at the
sheet center line rather than at the neutral axis of the ring. From
this moment the bending moment 1n the ring is easily found.

The underlying assumptions used in the analysis are as follows:

(1) The shear stress, carried by the sheet alone, may vary in the
circumferential direction but remains constant in the axial direction.

(2) The msterial in the cross section of the panel (sheet and
stringers) capable of carrylng normal stresses due to bending of the
panel is assumed spread around the circumference in a fictitious sheet
of thickness +t'.

(3) The loaded ring hes no torsional stiffness or bending stiffness _
out of its plane.

(4) The end ring supports are restrained from deforming in their o
planes but are free to warp out of their planes. o .

Under these assumptions, for any panel with constant geometrical
properties, a general differential equation 1s developed for the moment
‘at the sheet center line. All forces, stresses, and displacements in
the panel msy be obtained from that moment. The genersl differentiasl .
equation (see the appendix for development) is -

M, (o - 3p) au +_<1 - 6B + 692A) 2

as8 dg R® gﬂ_
33-%&2-_+e— ﬁ+6Al-3+£M=F(6) (1)
R R g2 R g2
where
(5, 3
_ =2lahn &h .5 dh
F(6) =R 555 +(1--3]3)d63 3B 5|+
462
g2|LL , (1 - 3p)d - 3(B 2eAdf 6eA (e,
i66 7 R

dlm &m é 3m 2
R<EE 4 (2 - 3p)dm 6 e2a) d _ 2eA e e dm
ae’ )d65 < B + R2/ ag3 3 Tl-ﬁ*'R_z' -1}
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When the ratio e/R, a measure of the eccentricity of-the ring and
sheet, is very small (§<<E) it cen be neglected; equation (1) then
contains only the two nondimensional parameters A and B, which are 6

related to the geometry and physicel properties of the panel: A = ilg—
IL

and B = EEL%E, The ratio A/B is an index of the over-all flexibility
GtL

of the structure. When this ratio is very small the ring section is

rather rigid. A large value of A/B (500, for example) indicates that

the ring section is somewhat flexible, causing radical departures of the

stress distributions from the elementary values. In actual practice

the paremeter B varies over a small range (between about 10 and 80),

Whereas A 1s usually much larger and may be as great as 2 X 107, or
even more; consequently, flexibility may be thought of in terms of
paremeter A alone. Values of A 1less than about 200 ususlly indicate
relatively inflexible rings, and increasing values indicate increasing

ring flexibility.

The right-hand side of equation (1), F(8), contains terms resulting
from the application of distributed loads; if only concentrated loads
are present F(6) becomes zero.

SOLUTION OF GENERAL DIFFERENTIAL EQUATION

The solution of equation (1) depends upon the nature of the roots
of the auxiliary slgebraic equation associated with the differentiel
equation. Of the required eight roots of the algebraic equation, four
mey be real and four complex, or all eight may be complex. . (For the
speclal case of no eccentricity of ring esnd sheet, sets of roots for
several combinations of parameters A and B are given in table I.)

If there are four real roots ikl, ike and four complex roots
t(a * bi), the solution for the bending moment is

k.6 -k, 8 -
M=Crel +Cppe T + R T

cve(a+bi)e N CVIe(a-bi)e N CVIIe-(a+bi)9 .

cVIIIe‘<a'bi)9 + Particuler solution (2)
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which can be written in real form as

M =C; sinh k16 + Cp cosh k36 + C3 sinh ky0 + C) cosh knf +

C5 sinh 6 cos b6 + Cg sinh 88 sin b8 + C7 cosh af sin b +

Cg cosh af cos bo + gJ(8) _ (3)

If there are four pairs of complex roots *(c; + d;i) and
t(co + dpi), the bending moment is

(Cl‘l’dli)a (Cl—d.li)e —(cl+dli)9 -(Cl—dli)e
M= CIe + CIIe + CIIIe + CIVe +

CVe(c2+c121)e . CVIe(c2-d21)e N CVHe-(c2+d21)e +
CVIIIe'(CZ'd2i)e + Particular solution (1)

which, written in real form, becomes

M = C; sinh ¢c,6 cos 4;6 + C; sinh c16 sin ;6 + C3 cosh c36 sin 4,8 f
Cy cosh ¢16 cos 4;6 + Cg sinh cpf cos dof + Cg sinh c 6 sin 46 +
Cr cosh cgf sin 48 + Cg cosh c6 cos dpf + Ja(e) (5)_

Since the particular solutions gJ(0) and jJ(@) depend upon the form

of F(0), no formal solutions are given here. Further remarks concerning
the solution of equation (1) are confined to the solution in real form,
either equation (3) or equation (5).

Equation (3) or equation (5) expresses the moment in any particular
panel where A, B, and R are constant; such a solution exists for each
panel constituting the structure to be analyzed. For the case of a
circular cylinder, solution (3) or (5) is the same as the energy solutions
of references 2 and 3 for a similar two-bay structure.

RELATION BETWEEN THE MOMENT M AND OTHER FORCES AND DISPLACEMENTS

All forces and displacements in the panel may be expressed in terms
of the moment given by equation (3) or (5) and derivatives of this moment.
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As previously noted, this moment is the moment at the sheet center line,
and with the exception of the ring bending moment all other forces and
displacements are those at the center line of the sheet. When no
eccentricity is involved the sheet center line coincides with the neutral
axls of the ring. Of major interest in a structure such as the one
described herein are the forces, stresses (obtainable from the forces),
and displacements listed in the following paragraphs, together with their
methematical expressions which are readily obtained in general form in
the appendix. These expressionse become consilderebly simplified in the
absence of distributed loads. (For positive sign convention of the
displacements and forces see figs. 1 and 3, respectively.)

The eight quantities listed in this paragraph are assoclated with
the boundary conditions (discussed in the next section). These
quantities - the forces and displacements at the flexible ring, the
shear flow at the panel edge, and the axial displacement between the
flexible and rigld rings at the panel edge - are:

(1) Bending moment, M

(2) Shear force

1 aM
v E_.._;m
(3) Ax1ial force
2
1l da™ dm
H=- R ag2 +Rf + 35

(4) Sheet shear flow

q = -}E o + EE% - R2 h + 25 + x m + EE%>
2Rr- |40 gp t__dfa_g P
(5) Axisl displacement

g

12 &P &h olon &  1fam  om
u = 5+t~ - R |— + ~— + =f{— + —3
YWR3Et' | a8  as 6 g9 R\IF g

e
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(6) Tangential displacement

. aM
vom -l B, 3-Rh+_+_m+daﬂ>
2R Gt as

3 2 L
L , oM Rgdh+d3f+_21:d +dm
R\z92 L

6RMEL de3 " w5 a2  ae3 0
(7) Radial displacement
wo. L Jé?m v  olan e 1fm edm
T T 2r2at |ae?  ap* ~ |88 T a2 = R\@ @3
L3 by o

3 L 3 5
d + _Re.d_h.+.d_£+_3;d_m_+i£ +
6RMEt' |aot  aeb a3 et B\ge3  asd

2
R+ 88M _ pe_ &
EI R gg2 ae

(8) Rotational displacements

72 &h dl‘h , &F 1 3°m .o d.)+m an .
202 aph d93 35 Rlge2 delL ae%/ |

efar e  oa dwm
EI\G8 "R g3 as 382

The shesr and normsl stresses in the two supporting panels follow.

The shear stress T 1n the sheet is given by

o
1 dM+d3M 2 as l<+dm>

= — — + m —_—
PR2t 1 80 453 3 "R 252
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The stringer normal stress o is

2 oo 2 03
U=L—X dM+dM R§2+df+%<dm+dn> (7)

[0>)

The ring bending moment, that 1s, the bending moment about the
neutral axis of the ring, is

2
aM dm
MR=M+S___eRf-e_- 8
Rd92 ae ()

For no eccentricity the moment at the sheet center line becomes the
ring bending moment.

BOUNDARY CONDITIONS

Inasmuch as a general differential equation of the form of
equation (1) applies for each of the panels comprising a given structure,
a like number of bending-moment solutions of the form of equation (3)
or (5) results. For the determination of the unknown coefficients
appearing in these solutions & sufficient number of boundaxry conditlions
must be found, one for each coefficient. Regardless of the number of
panels, the boundary condlitions involve only the eight expressions
listed in the previous sectlion, consisting of the forces and displacements
which occur at the sheet center line.

Although, for a particular problem, the application of these
expressions depends upon the structure to be analyzed and the loading,
all the boundery conditions may be summarized in one general statement:
No change in displacement or forces can occur across a boundary unless
a concentrated force 1s applied at the boundary, in which case the change
in forces must equal the applied force. Any concentrated load in the
plane of the ring can be resolved into a radisl or shearing force, a
tangential or normal force, and & moment. Then when & concentrated load
is applied, the boundary conditions require that the difference in
shear forces of the adjacent panels be equivalent to the applied radlal
load, the difference in axial forces be equivaelent to the applied
tangential load, and the difference in moments equel the applied moment.
In the absence of any concentrated loads, all the forces and displecements
must be continuous; that is, all elght expressions in one panel must
equal the corresponding expressions in the adjacent panel. If & concen-
trated load is applied within a panel, 1t i1s necessary in the anslysis
to consider the point of application of the load as a boundary and, hence,
to consider the panel as two panels, one on elther side of the load.

-—
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Although terms associated with distributed loads sppear in the
expressions for the boundary conditions, dlstributed loads affect the
boundary conditions only indirectly inassmuch as they affect the
displacements.

Further dlscussion of boundary conditions, as they apply to one of
the numerical examples, is given in the following section.

NUMERICAL EXAMPLES

The numericel examples deal with two geometrically simllar cylinders
constructed of four panels forming a doubly symmetricsl, essentially
elliptic cross section (fig. 2), with the flexible ring subjected to T T
concentrated radial, moment, and tangential loads at an intersection =~
with the major exis. Cylinder 1 has a very stiff loaded ring and
cylinder 2 a relatively flexible loaded ring. For each cylinder the
sheet thickness is constant, there 1s no eccentriclty of ring and sheet,
and the radius R; of the top and bottom panels is one-third the

radius Rp of the middle panels. The moment of inertis of each ring is

constant, but because of the change in radius, the rings change in
relative stiffness from one section to another as indicated by the change
in A/B given in tsble II. As seen in figure 4, the top panel, section 1,
Joins the middle panel, section 2, at 6 = 60° and the middle panel

Joins the bottom panel, section 3, at 6 120° (These dimensions were
also used in constructing fig. 2.)

Comparisons of the calculated distributions of bending moment, shear
force, and axial force in the ring and of shear flow in the sheet with
the distributions given by the elementary theory are shown in figures 5
to 10. The necessary numerical values used in the calculastions are given~
in tables IT and TITI. For ease in reading figures 5 to 10, the abscissa,
although it actually represents distance along the perimeter, is given
in degrees measured from the vertical axis of symmetry (as shown in .
fig. 4). Thus, since the ring perimeter of section 2 (fig. L4) is three
times that of section 1 or sectlon 3, whereas the angular distance for
all three sections is the same (60°), the distance in figures 5 to 10
along the sbscissa from 120° to 60° (corresponding to section 2) represents
three times the distance from 180° to 120° or from 60° to 0° (corre-
sponding to sections 1 and 3).

For the numerical examples, the labor of computation necessary to
calculate the bending moment and other desired quantities may be shortened
somewhat through cognizance that antisymmetrical loading produces an
antisymmetrical moment distribution sbout the vertical axis and symmetrical
loading ylelds a symmetrical distribution. Hence, only half the cylinder
at the ring need be considered (fig. 4). The procedure used in obtaining
the numerical results is illustrated by teking as an example cylinder 2
subjected to a concentrated radial load at 6 = 180°. The discussion
to follow 1s confined to cylinder 2 mo loaded.
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Differential Equations and Solutions

In the top panel, section 1 (fig. 4), the differential equation is

By e sdv o, s,
a8 3 36~ 3 @+ 3 a2 129

The resulting auxiliery algebraic equation yilelds the eight complex
roots (see table II):

t(cy + d;1) = £(2.509792 & 0.6216651)

t(cp £ dpi)

£(0.915513 & 2.1019991)

Since symmetrical loading is epplied to the structure, the moment in
this section 1s given by orily the symmetric terms:

M =.Co sinh cle sin 4;6 + Ch cosh c16 cos ale +

section 1

Cg sinh co@ sin dpf + Cg cosh c @ cos dpf (9)

In the middle panel, sectlion 2, the differential equation is
@--58@-119954-60‘1—2’—4 + 900000M = O
ae8 ae® ag* a62
The auxiliary algebraic equation has the eight roots (see table II):
tk; = £5.534415
iké = *7.395633
+(a + bi) = +(2.181206 1 L4.2918821)
The moment in section 2 is then

C,p' cosh kof + Cyg sinh 86 cos b6 +

Clh sinh a6 sin b6 + Cl5 cosh a8 sin b +

C16 cosh 8@ cos b8
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but since k30 end ko6, when 6 = 60° and @ = 1200, are large enough
so that their respective hyperbolic sines and cosines are of almost _ _
equal magnitude, 1t is better for computational purposes to rewrite the
moment in section 2 as B

e_'kee

k+6 kQQ
1
+ Clle + C +

kle -
Mgection 2 = Cge ~ + Cqe 12
Cl3 gsinh 88 cos b8 + Clh ginh a6 sin b8 +

C15 cosh 89 sin b8 + Cyg cosh ad cos bd (10)

For the bottom panel, section 3, the differentisl equation is the
same as for the top panel and the auxiliary algebraic equation has the
seme roots. Hence, the moment is given by -

Moection 3= 017' sinh cj6 cos 4,6 + Cyg' sinh c46 sin dle +
019' cosh cle sin dle + Cog' cosh cq,6 cos dle +
Coy sinh cpf cos dpf + Con sinh cof sin dy€ +

023 cosh cof sin 4,0 + Ceh cosh c26 cos dea

However, for 6 = 120° and 6 = 180° +the hyperbolic sines and cosines,
respectively, of c¢36 are almost identical, and it is advisable for

computational purposes to rewrite the moment in the bottom panel in the
form

Cle -Cle
M =C 4,8 + C
section 3 17®¢ co8 48 + Cyge cos 4,0 +

cle —cle
Cl9e sin dle + Cgoe 8in dle +

Co1 sinh cof cos dpb + Cos sinh c26 sin d6 +

Co3 cosh cpf sin dyf + Cpy cosh cpf cos a0 (11)

Boundary Conditions

Equations (9) to (11) contein twenty unknown constants; hence,
twenty boundery conditions aere needed. No boundary conditions are found 1
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at 6 = 0, since continuity of.all forces and displacements is already
satisfied as a consequence of taking advantage of the symmetry of the

structure and loading. The boundary conditions to be used in the
calculations must be found at 6 = 60°, @ = 120°, and 6 = 180°.

Eight of the boundary conditions are supplied at 6 = 60°, where,
in the absence of any concentrated loads, all eight expressions in
section 1 must equal the corresponding expressions in section 2. That
is, the moment, shear force, displacements, and so forth, must be
continuous. For example, the first conditilion requires continuity of the
moments, or :

Mgection 1 = Mgection 2 = ©.
which can be written
cqx dyx cq dq =
Co sinh —%— sin —%— + Ch cosh —%~ cos —%— +
CAT 14 ChT dox
06 sinh 2 sin S_%_ + 08 cosh 2 cos £z
3 3 3 3
klx klﬂ kgﬂ k2n
3 -3 3 73
C9e + Cloe + Clle + Clze +
an bx an b
013 sinh.Tr cos =3 + Clh sinh 3 sin = +
an br an b

015 cosh = sin =5 + Cl6 cosh =5 cos_; 5= 0

The other seven boundary conditions appearing at 6 = 60° are written

in a2 simlilar manner. The same continuity of the forces and displacements
must exist at 6 = 120°. Thus sixteen boundary conditions are provided,
with the four remaining conditions to be found at 6 = 180°.

For an applied radial load, the sum of the shearing forces on either
side of the cut must equal the applied shearing loed P. Because of
the symmetry of the structure and loading, half of this load is carried
by section 3 and the other half of the load is carried by the panel
to the left, which need not be considered. Furthermore, the shear
flow in the sheet is O at 6 = 180°, there can be no tangential or
sidewise displacement at 6 = 1809, and there are no angular displace-
ments caused by a concentrated radiasl load at this point. Hence, the
four boundary conditions needed may be summed up as follows:
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vl800 = 0-5P (128.)
1800 = O | (12v)
'V'OlSOO =0 (12C)
aw . Vo _
<E + -E—>1800 =0 (126.)

Equations (12a) to (124) can be reduced by proper substitution to

(a) (%) o 0.5FR,
1

3
(b) (d—b_,f) = -0.5PR;
86"/ 180°

48/ 180°
© (@) -,
as”, 180° ’

For example, equation (12a) can be written ' o
cy X -cq %
cl,.{e G:l cos 1% ~ 44 gin dft) - 018e (cl cos dln + dl sin dl:t) +

cyX -cyx
019e (cl sin dln: + dl cos dln:) - 020e (cl sin dl:t - dl COEB dln) +
021 @2 cosh coX cos dgn - d2 sinh coT sin 621t> +
022 (CE cosh cont sin aeﬁ + 62 ginh CyT COB d2n> +
023 6:2 ginh can' sin dpm + d2 cosh coX cos den:> +

Col (sinh cox cos dy% - dp cosh cy® sin dgib = 0.5PRy
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The solution of the twenty equations given by the boundary conditions
yields the values of the unknown coefficients Cos Clpy o« & & 023, Ceh R

shown in teble III. The bending moment in the loaded ring at any angle 6
is then found by using equation (9), (10), or (11) with the appropriate
coefficients. For example, substituting coefficients 017 to 024

from teble IIT into equation (11) for & = 180° gives

M gq0 = -0.11905k x 10"5PR1(2.6561|J+!+ X 1o3>(-0.372983) +
(-0.202191+ X 101PR1>@.376M3 X 10'3> (-0.372983) +

(0-342801 x 107%R, )(2. 6564k x 10%)(0.927839)+

@.216297 X 101P31><o.3761+1+3 X 10‘3> (0.927839)+ .
(-o.h97509 x 107'FR, (8. 444906)(0.949098) + .
(0.226239 x 1o*lPRl>(8.uuu906) (0.314983) +
(0.375148 x 1071PRy)(8.901257)(0.314983) +

(o .532861 x lO'lPRl>( 8.901257) (0.949098)

= 0.161390FR;

CONCLUDING REMARKS

The results obtained from the numerical examples agree with thoae
previously obtained for circular cylinders (see, for example, references 2
and 3) in indicating that concentrated loads applied to flexible rings
produce stresses in the rings and shell considerably different from those
computed from an engineering analysis (wherein the ring is treated as
a free ring supported by the usual elementary torsion and bending shears).

3/

1.3
wvhere A 1s everywhere less than sbout 200 the engineering anslysis is
adequate, but if A exceeds 200 such an analysis is inadequate.

- 1=6
Ring flexibility is essentially indicated by the parameter A (= 'R )
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The main effects of flexibility are to change considersbly the distri-
bution of stress and the magnitudes of the maximum stresses. The change
in maximum stresses is indicated in the following table, which gives the
approximate ratios of the sbsolute values of the maximum streess coeffi-
cients for cylinder 2 (A m~ 206 nesar the load but 150,000 some distance
away) to the maximm stress coefficients obtained from an engineering
analysis:

Type of
foed tress CM cq QV cH
Radial 0.5 %5|1.0|1.%
Moment 1.0| ¥47.5| 3.4] 6.3
Tangential 21 5.4 .211.0

For much lerger values of A, that is, for greater flexibility, the
ratios greater than unlty would increase considerably, those less than
unity would decrease somewhat, and the ratios of unity would remain
unchanged. .

Langley Aeronautical Leboratory
National Advisory Committee for Aeronautics
Langley Field, Va., August 1, 1951 : oo
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APPENDIX
DEVELOPMENT OF GENERAL DIFFERENTIAL EQUATION

Consider the two-bay panel with uniform geometrical properties
(fig. 1), loaded in the plane of the middle ring. In accordance with
the assumption that the shear stress in the sheet may vary circumferen-
tially but remains constant in the axisl direction, an infinitesimal
element of the sheet is subject to the stresses shown in figure 1.

Equilibrium in the =x-direction requires that
or do

—tds d&x +=—1' dx d8 = O (A1)
os ox
Since
Tt =g
and
ot' =p )
equation (Al) becomes
dp , dq
= +=—==0 (A2)
ox Os

Integrating equation (A2) with respect to x gives

- 99 '
P = =X oy + £1(8)

However, since the end ring supports are free to warp out of their planes,
p=0 at x =L, and therefore

og . o . -
g =L == :
1(9) Ss

Then 3
= _ caq
p=(L - x) e

The strain relation in the x-direction gives

ou
S x T ET
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so that

du _ 1 g _ 4% ' -
d3x Et° (L - x) o8 __(53)

Integrating equation (A3) with respect to x glves

2
1 x“ ) dq
Ues —{Ix - =— ==+ £»(8

Et' 2 >as 2(2)

but since, from symmetry of the structure and loading, u=0 at x =0,

fg(s) =0
8o that } . .
u = _l_ Ix - EE ég L (Ah)
Et! 2 / Js
The shear strain can be expressed &s

Gt 38 ox

from which u can be eliminated and v can be found in terms of gq.
Differentiating equation (Ak) with respect to. s and substituting the
result into equation (A5) gives ' ' ) -

év_=i__l_<Lx-_-£&
2 882 ) .

but since the. end ring supports are rigid In their planes, Vv = 0 at
x = L, and o

2
_ L 3 ¢
£3(e) = - g Ot T 52
so that
2
_x-L __ 1 2 .3 _-3)949
veita- gy (of - - md) 5
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This displacement in the sheet at the ring, where x = 0, becomes

2
L, L3 g (46)

The relation between the strain in the sheet in the circﬁmferential
direction and the deflections at the ring is

1 dVO
s "R\d@ -~

where by continuity w 1is the radial deflection of both ring and. sheet.
Since the strain e¢g in the sheet is the strain at the outermost fibers

of the ring,

Thus the radial deflection can be expressed as

v =R+ S0 (AT)

Differentiating equation (A6) and substituting the result into
equation (A7) yields

eRMR i dq L3 d3 a (48)

The relation between the ring beriding moment and the radial
deflection is given by (see, for example, reference 11)
2
MR - . EI dw b w (19)
(R_e)2 2.

Performing the indicated differentiation of equation (A8) and substituting
the result into equation (A9) eliminates w and gives

EI  |er[dMg 1, a3q | dq _ 13 fadq  a3q
sz " MR- &i3 T ®)t 5
e) do ) 3RPEL \@oD  ae3

(A10)

o
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It is now convenient to find the relation between the shear flow
in the sheet and the moment at the sheet center line, as well as to
express the moment at the ring center line in terms of the moment at
the sheet center line. Figure 3 shows an infinitesimsl segment of the
loaded ring and the positive directions of the forces. TFor the first

of the three equations of equilibrium, taking moments about the arigin

gives

@M + RAE + R°h 40 + Rm 46 + 2R2q d§ = O

or

1 /M dg o \
= ~— - R -— -~ R“h - Rm All

Summation of the tangential forces (neglecting terms of higher order)
glves '
V d& -Rhd -2Rqg a8 -dHE =0
or
dH

V = 25 + Rb + 2Rq . _ (A12)

Summetion of the forces in the radial direction glves
-Ed6 +Rf A0 - & =0

or

av
H=- 25 +RE . (A13)

Substituting the value of %%- from equation (A12) into equation_(Ali)

yields the shear force at 6:
1 aMm
Vegm " | (L)
Differentiating equation (Alkl) and substituting the result into

equation (Al3) gives the value of the normal force at the sheet center
line at 6:

1 §° '
H=_f£2-+3f+— (a15)
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Differentiating equation (Al5) and subtituting the result into
equation (All) gives the expression for the shear flow in the sheet at 6:

q=L.dﬂ+d_3M_Rah+9£+£<n+£m>:| (A16)
ae R d92

or® [¥ 463

The bending moment about the ring center line can be seen to be
composed of the moment M and the product of the exlal force H and
the eccentricity e, or

Mg =M - eE
=M+9-£M--eRf--ed—m (ALT)
R 462 a6 :

Differentiation of equations (Al6) and (Al7) and substitution of
the result into equation (Al0O) leads to the desired differential equation: -

dslg _ 3p) &M d6M <1 s 6e2.L> a'u .

ao st
33-@ 2-— J—+6Al-—+—j M = F(8) (A18)
R g2
where
F(G)—RQEEQ+(1 313)d3h 3p dhbf,
' 363 ao
ke : > 2
32d +(l-3B)——)+-—3B-eeAd2f 6eA1-E+e—2)f+
o g2/ @2 R R g B
dlm aom 6e2A d3m 2eA e ef\ldm
R ;;7—4'(2‘-33)&95 G.—GB d63 B-—ﬁ—l—ﬁ'i'i??ié-

Equation (A18) is the general form of the differential equation for the

bending moment at the sheet center line for any of the panels comprising

the structure. The bending moment in the ring for any such panel is

given by equation (AlT7). ) _ B o o -
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TABLE 1.~ ROOTS OF AUXTLIARY ATGEPRAIC EQUATION WHEN e = 0 F(R

SEVERAT, COMBTNATIONS OF A ARD B

JvE o e
-3 atr?
20 Root
A 60 150 350 Syabols
$1.250205 +0.956180 $0.743842 $0.571042 231
10° +7. 745793 £13. 516404 21,213203 13203439 £y
£(0.612234 + 1.4679861) | £(0.475554 + 1.2973971) | +(0.371310 + 1.1893351) | +(0.290865 + 1.1131441) |4(a + bi)
+2.027436 11.613689 +1.326187 +1.092601 1k
103 +7.T#he29 £13. 416370 +21.213202 132. 403439 Fp
#(0.972538 + 1.9969011) | +(0.798821 + 1.7145251) | +(0.661073 ¥ 1.5219621) | +(0.547534 + 1.3740901) | +(a & b1)
$3.157270 12.523291 +2,117014 ' +1.795392 13
101‘ +7.728363 +13. 426028 +21.223188 $32. 403439 tks
+(1.347531 + 2.8183901) | +(1.23639% £ 2.3889511) | +(1.052130 + 2.0850721) | £(0.896469 + 1.8457881) | +(a + bi)
15.016203 +3.835266 +3.230542 +2.769566 £y
10° +T.53960% +13. 412609 +21,213049 +32. 403431 1k,
+(2.058771 + 4.0301991) H1.595017 + 2.9595621) | #(1.3792T% + 2.5939991) | +(a + bi)

+(1.83TT06 + 3.517T221)

2

2142 ML VOV
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TABLE IT.- NUMERICAL VAIUES USED IN COMPUTATIONS

MO Et'R®
A=——3 B= 5
1.3 GtL

Cylinder | Section A B %. Roots of suxiliary equation
+0.236301
20_ |20 ~
1 and 3 %55 5 0.03 +2.581786
+(0.109747 + 1.0195321)
1
+1.061451
2 50 20 2.50 +7. 745880
3(0.521510 + 1.3544931)

+(2.509792 + 0.6216651)
1 and 3 {29990 | 20 } 9n 59 )

729 9 f(o.915513 + 2.1019991)
2
+5,.534415
2 150,000{ 20 |7500.00 +7.395633

+(2.181206 + 4.2918821)

“!ﬂiﬂ!’”
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TABLE IIT.- VALUES OF COEFFICIENTS! FOR NUMERICAL EXAMPLES

Cylinder 1 Cylinder 2
Coefficient Load Load
Radial Moment Tangential Radiel Moment Tangential

;:-1 ------------ 0.147507 0.2kg767 | ——-mmmmmeme- ~0.860733-03 { 0.119301-03
Cxo 0.67903L-0L .| mcmmmmmcne | cmcmamceeeas 0.949137-0% | =ecmmmmmmmmm | mmmem e
I B 275041-04 | =.157406-03 | ~=-mmecmmcau- .292731-03 | -.371518-0k
cy 12589505 | mmmmmmmmmam | mmmcmamneaan -.284700-03 | =r-=mmmmmman | mmem e
C5 | ~mmmmmmmeme- -.136156 54809 | m=mmmmmcmmaee -.148018-01 | .221238-02
Cg -.525229 | mmmmmmmmmceef cem e -.197121-02 | =e=mmmemcmme | c;eemmmemaan
Cp | e -.165618 23633803 | =-mmmmmemmmae -.521539-02 | .48Lk959-03
Cg .282018~0L | ===-emcmma= | memmmceecaas -.354500-02 -—-
Cy .171565-01 .188166 202467 -.657213-08 .140829-06 | -.161423-07
Cio .303490-01 | -.121785 -.111398 ~.534558-01 .270768 ~.697692-01
Cqq, -.264559-10 .116591-10 | -.116591-10 .397640-09 -.161540-08 | .7LOTT4-09
Cip .889303 -.508263-01 .851830 -. k79259 ~.380612+01 | .6387TL
Ci3 .329176-01 | -.296012 . br2934 -.122989-01 -.36147h-01 | .1485865~02
C1y - . kgo6k6 .373871-01 290987 .829L22-03 -.491296-01 | .702908-02
Ci5 .192013 -.184225 -.160k03 -.117551-02 47218401 | -.668234-02
Ci6 .720834-01 .| .2T4929 -.400188-01 | .131739-01 .392728-01 | -.527300-02
Ci7 -.119460 -.164389-01 174960 -.119054-05 .TT8086~0k | -.192398-04
C18 .31505T .363960 .2245h0 -.202194+01 ~.T11069+0L | .87295L
Ci9 -.898224.08. | .17k922-09 .301271-07 | .3k2801-04 .804877-0hk | .268139-04
Cog * -.711275-02 | -.259599 ~.364881 .216297+01 .882602+01 | -,112279+01
Coy | -.640348-01 .207820-02 .128917+01 | -..497509-01 -.142194 .194136-01
Con -.531867 .131177-01 .506058-01 | -.226239-01 -.709217-01 | .270731-02
Co3 -.254629 -.30L436 ~.3289k1 .375148-01 .1241468 -.10k4012.01
Coy .194401-01 | -.242335-01 | -.613555-03 .532861-01 .167720 -.25162h.01

Lrpe following convention is used to indicate multiplication factors: 'E:

. 2
+OL = x 10; 402 = x 20%; -01 = x 10™%; -02 = x 10™%; and 50 forth.
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ilexib'le * . xRigid

Figure .- Two-bay panel showing positive directions of displacements
ond sheet stresses.

Figure 2.- Two-bay cylinder, composed of four clrcular panels, with doubly
symmetrical noncircular rings, used for numerical examples.
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Figure 3.- Free-body diagram of ring section showing positive
directions of forces,

6=0°
- Section |
60°
Section 2
\—I— “
e -]
120
Section 3

180° ~REE

Figure 4.~ Cross-sectional view of half of loaded ring used for
numerical examples.
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— Elementary theory
4 ---~ Cylinder |
—= Cylinder 2

} Present theory

ey

(a) Ring bending moment.

D
2
R
Ce=aF
o
0

180 120 100 80 60 o)
8,deg

(b) Sheet shear flow.

Figure 3.- Bending-moment and shear-flow distributions produced by
concentrated radial load P at 8 =180°,



NACA TN 2512

. . — Elementary theory
-5 === Cylinder |
— =~ Cylinder 2

} Present theory

VN

=l ' \\‘ \\

e

o e e b -

\

(a) Ring shear force.

8
l6 td \\‘\
\
\
4 i (l‘ ~~~~~~~ s
\
/ \\ | \
2 3\ AN
/ N |
\, - Lo
0] T\ e ~
. \\ -~ u \
A
-2

180 120 100 80 60 0

8,deg

(b} Ring axial force.

Figure 6.~ Ring shear- and axial-force distributions produced by
concentrated radial load P at 8 =180°
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— Elementary theory

-— Cylinder_ | B h —
—- Cylinder 2 resent theory
]
M
M
Cnu=1
M™ Mg
// T -\‘\“\
___-/
o ’/,
\\\ - — R ”/”
{(a) Ring bending moment.
L.O N
/ \‘\
/[ N~ _ _ I
Rlz O i \“\__'___._———’—
Ce=q3z- /
1
-0
/
-20 ,/
_30 [
180 120 100 80 60 o

6 ,deg
(b) Sheet shear flow.

Figure 7.- Bending-moment and shear-flow distributions produced
by concentrated moment load M, at 8 =180°

31
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— Elementary theory
--- Cylinder | }
—- Cylinder 2 Present theory

32

-1.5

\
—/

0 ;
\\__——/'

(a) Ring shear force.

A
| R S
VO e T N
K “S==zsaade
P

80

120
_ 6,deg

(b) Ring axial force.

Figure 8.~ Ring shear- and axial-force distributions produced by

concentrated moment load Mg at 8 = 180°
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— Elementary theory

--- Cylinder | }
—~ Gylinder 2 Present theory
l2 T
| - — iy
’,”/_‘ \‘\\
= M_ /'/-—-\‘\_\" "/’
CM- TRl O ’/,/ / —_— =
'12 |
(a) Ring bending moment.
1O
\
1
1
\l
5\ _
R \‘
Co= Q-TL \
\\ ~M\‘ _ ‘
O \T /-.\::-;H‘_{____
\\—/’/—
|

180 {20 100 80 60 0
8,deg

(b) Sheet shear flow.

Figure ©.- Bending-moment and shear-flow distributions produced
by concentrated tangential load T at 6 =180%
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' — Elementary theory

--- Cylinder | b \
—- Cylinder 2 resent theory
_.4 L T
,/'
Z,
//
,/
Lo — P ,
| N A,L-——/
(o) Ring shear force.
6
L—‘—-~~\-..,__\
\\‘\
P =T
100 80 50 5
9ded

(b) Ring axial force.

Figure 10.~ Ring shear- and axial-force distributions produced by

concentrated tangential load T at 8 =18C°
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